

ENVIRONMENTAL CONSULTING . GEOTECHNICAL ENGINEERING . CONSTRUCTION MATERIALS TESTING

PN: 16813

August 17, 2009

Ms. Ann Bentley John F. Murphy Homes 800 Center Street Auburn, Maine 04210

Re:

Limited Subsurface Investigation

144 Montello Street Lewiston, Maine

Dear Ms. Bentley:

Summit Environmental Consultants, Inc. (Summit) is pleased to submit this Phase II Limited Subsurface Investigation report to John F. Murphy Homes, Inc. (JFMH) for the 144 Montello Street property in Lewiston, Maine (Site). See Figure 1 for a Site Location Plan. The Scope of Work for the project was based upon the recommendations made within the Phase I Environmental Site Assessment (ESA) completed on your behalf by Summit on April 2, 2009.

Background

Summit Environmental Consultants, Inc. (Summit) completed a Phase I Environmental Site Assessment (ESA) on the undeveloped property located at 144 Montello Street, Lewiston, Maine on April 2, 2009. The ESA revealed no evidence of "Recognized Environmental Conditions" in connection with the Site; however, based on site visit, historic research, and interviews; the following recommendations were made by Summit:

• It is recommended due to the unknown source and extent of past fill activities on the Site that further investigation may be required if future plans require excavation of the filled areas.

Based upon the unknown source(s) and extent of past fill activities JFMH, authorized Summit to perform a limited test pit investigation.

On July 6, 2009, Summit conducted a limited test pit investigation at the Site to identify the composition and extent of fill material on the Site. Five tests pits were located throughout what was believed to be the fill area. Two soil samples were taken from each test pit and field screened for the presence of total organic vapors (TOVs) using a MiniRae, Inc.® "MiniRae 2000" field-portable photoionization detector (PID) equipped with a 10.6 eV probe. Hazardous materials and/or petroleum products (e.g., odors, stains, sheens) were not noted in any of the test pits; however, PID responses above background levels were recorded for several soil samples (0.6 parts per million (ppm) to 27.3 ppm). However, Summit recommended that due to the unknown source of the fill, additional characterization (analytical data) would be required to more thoroughly assess potential impacts and/or to provide data if the material is to be removed from the Site.

640 Main Street • Lewiston, ME 04240

Tel: (207) 795-6009 • Fax: (207) 795-6128

144 Montello Street, Lewiston, Maine August 17, 2009 Page 2

Based upon the unknown source(s) and extent of past fill activities JFMH, authorized Summit to perform a limited Phase II Limited Subsurface Investigation (LSI).

Phase II Limited Subsurface Investigation (LSI)

On July 23, 2009 Summit oversaw the completion of seven test pits (TP-1 through TP-7) by G. M. Morin Enterprises, a local contractor, located within the footprint of the proposed Site building and within the parking area. See Figure 2 for a Site Plan. Photos are included in Attachment A. In each location Summit collected soil samples at approximately 1.5 feet and 3.5 feet below ground surface (BGS) and field screened them for the presence of total organic vapors (TOVs) using a MiniRae® 2000 field-portable photoionization detector (PID) equipped with a 10.6 eV probe, calibrated for isobutylene in accordance with the manufacturer's specifications. PID results are included on the Test Pit Logs in Attachment B.

TP-1 was excavated at the southwest corner of the proposed building location. The top three feet of soil was observed to be brown silty-sand and clay (fill). Native material in the form of decomposing roots was observed at 3.5 BGS. Below the roots, sandy silt grading to silt and clay were observed to five feet. PID readings ranged from 12.7 parts per million (ppm) at approximately 1.5 feet below ground surface (BGS) to 12.3 ppm at a depth of approximately 4 feet BGS. The test pit was terminated at 5 feet BGS and backfilled. No unusual conditions were noted within test pit.

TP-2 was excavated at the center of the proposed building. The top four feet of soil was observed to be brown silty-sand and clay with minor amounts of asphalt. Decomposing roots were observed at four feet BGS. Below the roots, sandy silt grading to silt and clay were observed to five feet. PID readings ranged from 13.8 ppm at approximately 1.5 feet BGS to 14.2 ppm at a depth of approximately 3.5 feet BGS. The test pit was excavated to a depth of 5 feet BGS and backfilled. A slight petroleum-type odor was noted within this test pit from approximately 6" to 3.5 feet BGS.

TP-3 was excavated at the northwest corner of the proposed building. The top 4.5 feet of soil was observed to be brown silty-sand and clay with minor amounts of asphalt. Decomposing roots were observed at 4.5 feet BGS. Below the roots, sandy silt grading to silt and clay were observed to five feet. PID readings ranged from 13.3 ppm at 1.75 feet BGS to 8.6 ppm at 3.5 feet BGS. The test pit was excavated to a depth of 5 feet BGS and backfilled. No unusual conditions were noted within test pit.

TP-4 was excavated at approximately ten feet south of the northeast corner of the proposed building. The top 4.5 feet of soil was observed to be brown silty-sand and clay with minor amounts of asphalt. Decomposing roots were observed at 4.5 feet BGS. Below the roots, sandy silt grading to silt and clay were observed to 5.5 feet BGS. PID readings ranged from 9.8 ppm at 1.5 feet BGS and 6.3 ppm at 3.5 feet BGS. The test pit was excavated to a depth of 5.5 feet BGS and backfilled. A slight petroleum-type odor was observed from 1 foot to 3.5 feet BGS.

TP-5 was excavated approximately ten feet north of the southeast corner of the proposed site building. The observations made within TP-5 were consistent with those within TP-1-4 with exception of a decomposed grass layer observed at approximately 4 feet BGS and no asphalt

144 Montello Street, Lewiston, Maine August 17, 2009 Page 3

was observed. PID readings were 17.7 ppm at 2 feet BGS and 0.6 ppm at 3.5 feet BGS. A slight petroleum odor was noted within this test pit from approximately 2 feet BGS to 3.5 feet BGS. The test pit was excavated to a depth of 5 feet BGS.

TP-6 was excavated within the proposed parking area, approximately 25 feet east of TP-5. The observations within TP-6 were consistent with those within TP-5; however, water was noted at 5.5 feet BGS. PID readings were 11.1 ppm at 1.5 feet BGS and 5.4 ppm at 3 feet BGS. A slight petroleum odor was noted at approximately 1 to 3 feet BGS within this test pit.

TP-7 was excavated within the proposed parking area, approximately 25 feet southeast of TP-6. The top 3.5 feet of soil was observed to be brown silty-sand, clay and gravel. From approximately 3.5 feet to 4 feet BGS a wet, granular sandy layer was observed, underlain by brown, silty clay. The test pit was excavated to a depth of 5.5 feet BGS. PID readings were 0.8 ppm at 1.5 feet BGS and 4.7 ppm at 3 feet BGS. No unusual conditions were noted within this test pit.

Soil samples from TP-2, 3, 5 and 6 were submitted to Maine Environmental Laboratory of Yarmouth, Maine for analysis of volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), and RCRA metals.

Findings

Minor amounts of asphalt were observed in TP-2, 3 and 4. Summit estimated that approximately 2,800 cubic yards of fill has been placed on the Site. Each Soil sample result from TP-2, 3, 5 and 6 reported the presence of Polycyclic Aromatic Hydrocarbons (PAH), as well as naphthalene in TP-5A. PAHs are typically associated with the incomplete combustion of coal, coal tar or oils and can be present in ash or combustion residue. The presence of PAHs in each sample suggest that the fill material may have originated from an industrial site. However, no information concerning the source has been found.

The Maine Department of Environmental Protection (MEDEP) has established Remedial Action Guidelines (RAGs) for potentially contaminated soil. Although analytical results from the Site do not exceed the MEDEP guidelines, several reported concentrations are near the target guidelines. If this fill is to be removed from the Site, it will need to be disposed at a facility licensed to handle PAH impacted soil. Soil sample results are included in Attachment C.

Conclusions

Should JFMH wish to proceed with development of this Site, we recommend that a meeting be held with MEDEP to clearly identify the measures required to minimize potential risk to persons living at the Site. Measures could include removal of fill, placement in areas to minimize direct contact and/or covering the fill with sufficient "clean" fill to minimize direct contact with the fill material.

144 Montello Street, Lewiston, Maine August 17, 2009 Page 4

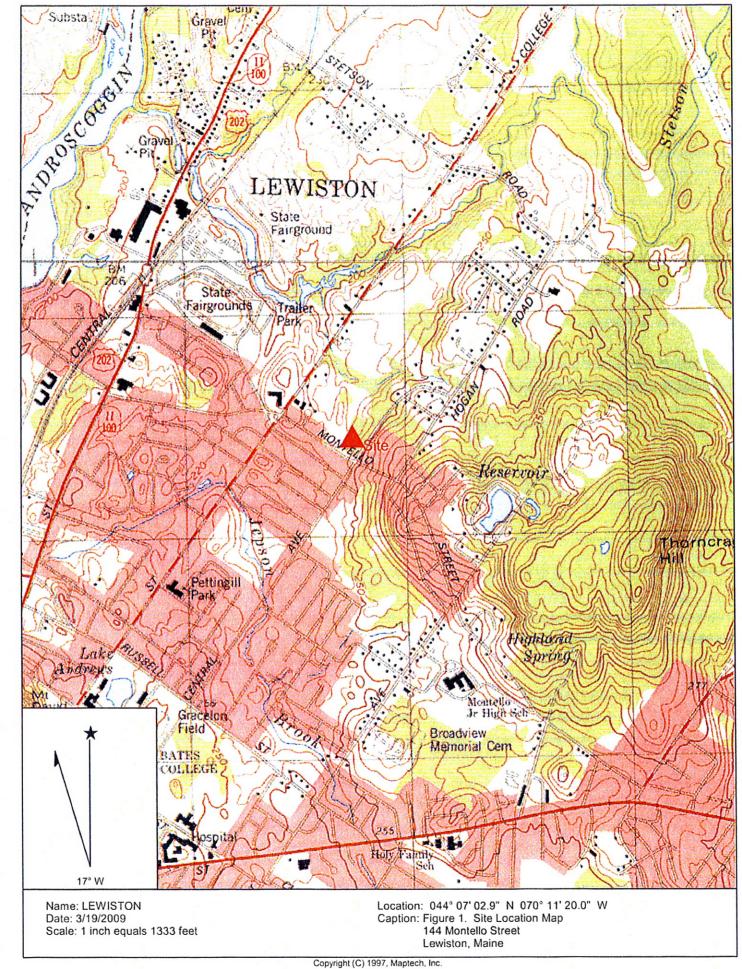
If you have any questions regarding the above information, please feel free to contact either of the undersigned at your convenience.

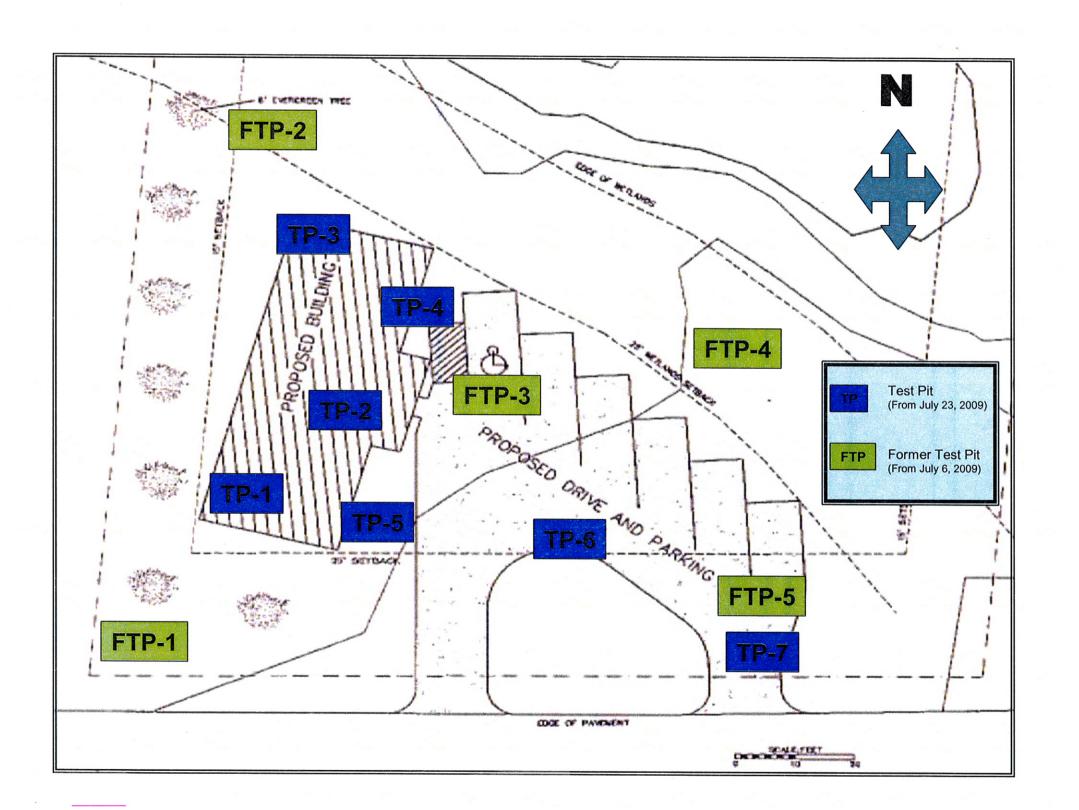
Sincerely;

SUMMIT ENVIRONMENTAL CONSULTANTS, INC.

Ronnie Mocciola Staff Scientist

Michael A. Deyling, C.G., P. Hg.


Horald I of occord I


Principal Hydrogeologist

Attachments

Figures

Site Location Site Plans

640 MAIN STREET LEWISTON, MAINE 04240 (207) 795-6009 NWW.SUMMITENV.COM

	`		SCI ENVIRONMENTAL CO	
DRAWN BY:	K.L.M	APPROVED BY:	D.B.K.	
DATE:	60-71-00	APPROXIMATE SCALE: APPROVED BY:	NOT TO SCALE	
TITLE: SITE PLAN	AM MOTORME LEGICLE OF CHILDRING A THE COLUMN	PROJECT: 144 MONTELLO STREET, LEWISTON, ME	CLIENT: JOHN F. MURPHY HOMES, INC.	

FIGURE:

JOB NUMBER:

16813

Appendix A

Site Photographs

PHOTOGRAPHIC LOG

Client Name:

John F. Murphy Homes

Project No.

16813.1

Photo No. 1

Date:

August 17, 2009

Site Location:

144 Montello Street Lewiston, Maine

Description:

Test Pit (TP) 1. All test pits looked very similar to TP-1.

Photo No. 2

Date:

August 17, 2009

Site Location:

144 Montello Street Lewiston, Maine

Description:

TP-4. Minor amounts of asphalt were found in TP-2, 3 and 4.

PHOTOGRAPHIC LOG

Client Name:

John F. Murphy Homes

Project No.

16813

Photo No. 3

Date:

August 17, 2009

Site Location:

144 Montello Street Lewiston, Maine

Description:

TP-6. Water was noted at the bottom of TP-6 and 7.

Photo No. 4

Date:

August 17, 2009

Site Location:

144 Montello Street Lewiston, Maine

Description:

A thin, granular layer of wet sand near the bottom of TP-7.

Appendix B

Test Pit Logs

SUMMIT TEST PIT LOG Test Pit # TP-1 **ENVIRONMENTAL SERVICES, INC.** Project: 144 Montello Street Project # 16813 640 Main Street Lewiston, Maine Lewiston, Maine 04240 Contractor: Morin Enterprises Location: Southwest corner of proposed building location Equipment: Excavator Summit Staff: Ronnie Mocciola Date: July 23, 2009 Weather: Clear Sunny **DESCRIPTION** Depth (ft) **SOIL DESCRIPTION STRATUM** PID Reading (PPMV) Brown silty-Sand and Clay SILTY SAND AND CLAY 1_ 2_ 1.5' = 12.7 ppmv3_ $4^{t} = 12.3 \text{ ppmV}$ Observed roots - brown silty-Sand SANDY SILT 4_ SILT AND CLAY 5 Bottom of test pit at 5' below ground surface (bgs) 6_ 7_ 8 9 10 11_ 12 13 14 15 16_ 17 18 Notes:

• •	SUMMIT	TE	ST PIT LOG	Test Pit #	TP-2
EN	/IRONMENTAL SERVICES, INC.	Project:	144 Montello Street	Project #	16813
	640 Main Street Lewiston, Maine 04240		Lewiston, Maine		
	r: Morin Enterprises	Location:	Center of proposed build	ling	
	t: Excavator aff: Ronnie Mocciola	Date: July	, 23, 2009	Weather: Cle	or Cunny
		CRIPT		Weather, Cic	at Surny
Depth (ft)	SOIL DESCRIPTION		STRATUM	PID Re	ading (PPMV)
	Brown silty-Sand and Clay		FILL		
1	with minor amounts of asphalt				
2				1 5' -	- 12 9 ppmy
. 2				1.5 =	= 13.8 ppmv
3				3.5' =	= 14.2 ppmv
4	Observed roots brown Candy Cilt		CANDY CILT		
4	Observed roots - brown Sandy Silt		SANDY SILT		
5			SILT AND CLAY		
	Bottom of test pit at 5' below ground	d surface	e (bgs) I		
6					
7					
8					
°					
9					
10				-	
10—					
11					
12					
13					
14					
15					
16					
17					
18					
Notos	Note duratural and a firm		[t- 2 F]	<u> </u>	
<u>Notes:</u>	Noted petroleum odor from ap	prox. 6"	ເບ 3.5		

SUMMIT TEST PIT LOG Test Pit # **TP-3** Project: 144 Montello Street **ENVIRONMENTAL SERVICES, INC.** Project # 16813 Lewiston, Maine 640 Main Street Lewiston, Maine 04240 Location: Northwest corner of proposed building Contractor: Morin Enterprises Equipment: Excavator Weather: Clear Sunny Summit Staff: Ronnie Mocciola Date: July 23, 2009 **DESCRIPTION** Depth (ft) **SOIL DESCRIPTION STRATUM** PID Reading (PPMV) Brown silty-Sand and Clay FILL with minor amounts of asphalt 1.75' = 13.3 ppmv2 3.5' = 8.6 ppmv3 SANDY SILT Observed roots - brown Sandy Silt SILT AND CLAY 5_ Bottom of test pit at 5' below ground surface (bgs) 6_ 7 9_ 10 11 12 13 14 15 16 17 18 Notes:

SUMMIT TEST PIT LOG Test Pit # **TP-4** Project: 144 Montello Street **ENVIRONMENTAL SERVICES, INC.** Project # 16813 640 Main Street Lewiston, Maine Lewiston, Maine 04240 Contractor: Morin Enterprises Location: 10' south of the northeast corner of the Equipment: Excavator proposed building. Summit Staff: Ronnie Mocciola Weather: Clear Sunny Date: July 23, 2009 **DESCRIPTION** Depth (ft) **SOIL DESCRIPTION STRATUM** PID Reading (PPMV) Brown silty-Sand and Clay FILL with minor amounts of asphalt 1.5' = 9.8 ppmv2 3.5' = 6.3 ppmv3_ Observed roots - brown Sandy Silt SANDY SILT SILT AND CLAY 5 Bottom of test pit at 5.5' below ground surface (bgs) 7_ 10 11 12 13 14 15 16 17 18 Noted petroleum odor from approx. 1 to 3.5' Notes:

TP-5 **SUMMIT TEST PIT LOG** Test Pit # **ENVIRONMENTAL SERVICES, INC.** Project: 144 Montello Street Project # 16813 Lewiston, Maine 640 Main Street Lewiston, Maine 04240 Location: 10' north of the southeast corner of the Contractor: Morin Enterprises Equipment: Excavator proposed building. Weather: Clear Sunny Summit Staff: Ronnie Mocciola Date: July 23, 2009 **DESCRIPTION** Depth (ft) SOIL DESCRIPTION **STRATUM** PID Reading (PPMV) FILL Brown silty-Sand and Clay 1 2' = 17.7 ppmv2 3.5' = 0.6 ppmv3 4 Observed grass layer - brown Sandy Silt SANDY SILT SILT AND CLAY 5_ Bottom of test pit at 5.5' below ground surface (bgs) 6_ 7_ 9 10 11 12 13 14 15 16 17 18 Noted petroleum odor from approx. 2 to 3.5' Notes:

TEST PIT LOG SUMMIT **TP-6** Test Pit # Project: 144 Montello Street **ENVIRONMENTAL SERVICES, INC.** 16813 Project # 640 Main Street Lewiston, Maine Lewiston, Maine 04240 Location: 25' east of TP-5. Within proposed parking area. Contractor: Morin Enterprises Equipment: Excavator Summit Staff: Ronnie Mocciola Date: July 23, 2009 Weather: Clear Sunny **DESCRIPTION** Depth (ft) **SOIL DESCRIPTION STRATUM** PID Reading (PPMV) Brown silty-Sand and Clay FILL 1_ 1.5' = 11.1 ppmv2_ 3' = 5.4 ppmv3_ Observed grass layer - brown Sandy Silt SANDY SILT SILT AND CLAY 5_ Bottom of test pit at 5.5' below ground surface (bgs) (encountered water) 7_ 8 9 10 11 12 13 14 15 16 17 18 Noted petroleum odor from approx. 1 to 3' Notes:

SUMMIT TEST PIT LOG Test Pit # **TP-7 ENVIRONMENTAL SERVICES, INC.** Project: 144 Montello Street Project # 16813 Lewiston, Maine 640 Main Street Lewiston, Maine 04240 Location: 25' southeast of TP-6. Within proposed parking area. Contractor: Morin Enterprises Equipment: Excavator Weather: Clear Sunny Date: July 23, 2009 Summit Staff: Ronnie Mocciola **DESCRIPTION** Depth (ft) SOIL DESCRIPTION **STRATUM** PID Reading (PPMV) FILL Brown silty-Sand and Clay and Gravel 1 1.5' = 0.8 ppmv2 3' = 4.7 ppmv3 4-6" layer of granular Sand (water) Granular Sand 3.5' 4 SILT AND CLAY Brown silty Clay Bottom of test pit at 5.5' below ground surface (bgs) (encountered water) 6_ 7_ 9 10 11 12 13 14 15 16 17 18 Notes:

Appendix C

Soil Sample Results

Maine Environmental Laboratory

Report of Analyses

One Main Street Yarmouth, Maine 04096-1107 Tel (207) 846-6569 Fax (207) 846-9066 e-mail: melab@maine.rr.com

Mike Deyling
Summit Environmental Consultants, Inc.
August 04, 2009
Page 1 of 5

640 Main Street

Lewiston, ME 04240 Report No.: SME833-09

Enclosed are the results of the analyses requested on your samples as received by the laboratory. Samples were received in acceptable condition and analyzed within method holding times with all quality control data within laboratory acceptance limits unless noted. Reporting detection limits are the minimum levels for reporting quantitative data. These limits are 3.18 times the method detection limit as defined in CFR 40 Part 136, Appendix B. Data reported between the reporting and method detection limits are J flagged (estimated). Maine Environmental Laboratory is certified by Maine (cert. #200904) and New Hampshire NELAP (NHELAP) (cert. #2031). A list of certified parameters is available on request. The results reported herein conform to the most current NELAP standards, where applicable, unless otherwise narrated in the report. This report shall not be reproduced, except in full, without the written consent of the laboratory.

The complete report consists of the following sections:

Maine Environmental Laboratory report

Chain of custody form

Analytics Environmental Laboratory report

References

EPA - EPA600/4-79-020, Methods for Chemical Analysis of Water and Wastes, USEPA, Cincinnati, Ohio, March 1983.

SW8 - SW846, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, USEPA, third edition, 1986.

STM - Standard Methods for the Examination of Water and Wastewater, 18th edition, APHA, AWWA, WPCF, 1992.

CLP - USEPA CLP Statement of Work for Inorganics, ILMO3.0.

AOA - Official Methods of Analysis of the Association of Official Analytical Chemists, 14th edition, 1984.

Authorized signature		
	Herbert S. Kodis, laboratory director	

Maine Environmental Laboratory

Report of Analyses

One Main Street Yarmouth, Maine 04096-1107 Tel (207) 846-6569 Fax (207) 846-9066 e-mail: melab@maine.rr.com

Mike Deyling Page 2 of 5

Summit Environmental Consultants, Inc.

640 Main Street August 04, 2009

Lewiston, ME 04240

Report No: SME833-09 Sampler: R. Mocciola Date received: 07/24/09 Sampling date: 07/23/09
Project ID: 144 Montello Phase II Sample matrix: Soil Laboratory ID: SME83309-01 Sample ID: TP 2B

Data reported on a dry weight basis.

				Method	Reporting		
			Date	Detection	Detection		
Parameter	Results	units	Analyzed	Limit	Limit	Method	Reference
Arsenic, total	12.3	mg/kg	08/03/09	0.4	1.2	3050B/6010B	SW8
Barium, total	66	mg/kg	08/03/09	1	4	3050B/6010B	SW8
Cadmium, total	ND	mg/kg	08/03/09	0.4	1.2	3050B/6010B	SW8
Chromium, total	34	mg/kg	08/03/09	1	4	3050B/6010B	SW8
Lead, total	12	mg/kg	08/03/09	1	4	3050B/6010B	SW8
Mercury, total	0.09	mg/kg	08/04/09	0.02	0.06	7471A	SW8
Selenium, total	3.4	mg/kg	08/03/09	0.4	1.2	3050B/6010B	SW8
Silver, total	ND	mg/kg	08/03/09	0.4	1.2	3050B/6010B	SW8
Total Solids	80.44	%	07/28/09	0.01		CLP 4F	CLP

Maine Environmental Laboratory

Report of Analyses

One Main Street Yarmouth, Maine 04096-1107 Tel (207) 846-6569 Fax (207) 846-9066 e-mail: melab@maine.rr.com

Mike Deyling Page 3 of 5

Summit Environmental Consultants, Inc.

640 Main Street August 04, 2009

Lewiston, ME 04240

Report No: SME833-09 Sampler: R. Mocciola Date received: 07/24/09 Sampling date: 07/23/09 Project ID: 144 Montello Phase II Sample matrix: Soil Laboratory ID: SME83309-02 Sample ID: TP 3A

Data reported on a dry weight basis.

				Method	Reporting		
			Date	Detection	Detection		
Parameter	Results	units	Analyzed	Limit	Limit	Method	Reference
Arsenic, total	11.5	mg/kg	08/03/09	0.4	1.2	3050B/6010B	SW8
Barium, total	52	mg/kg	08/03/09	1	4	3050B/6010B	SW8
Cadmium, total	ND	mg/kg	08/03/09	0.4	1.2	3050B/6010B	SW8
Chromium, total	28	mg/kg	08/03/09	1	4	3050B/6010B	SW8
Lead, total	16	mg/kg	08/03/09	1	4	3050B/6010B	SW8
Mercury, total	0.05 J	mg/kg	08/04/09	0.02	0.06	7471A	SW8
Selenium, total	2.9	mg/kg	08/03/09	0.4	1.2	3050B/6010B	SW8
Silver, total	ND	mg/kg	08/03/09	0.4	1.2	3050B/6010B	SW8
Total Solids	80.93	%	07/28/09	0.01		CLP 4F	CLP

195 Commerce Way Suite E Portsmouth, New Hampshire 03801 603-436-5111 Fax 603-430-2151 800-929-9906 www.analyticslab.com

Mr. Herb Kodis Maine Environmental Laboratory, Inc. PO Box 1107 Yarmouth, ME 04096-1107 Report Number: 64386

Revision: Rev. 0

Re: SME 833-09

Enclosed are the results of the analyses on your sample(s). Samples were received on 24 July 2009 and analyzed for the tests listed below. Samples were received in acceptable condition, with the exceptions noted below or on the chain of custody. These results pertain to samples as received by the laboratory and for the analytical tests requested on the chain of custody. The results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report. Please see individual reports for specific methodologies and references.

Lab Number	Sample Date	Station Location	<u>Analysis</u>	Comments
64386-1	07/23/09	TP 2-B	EPA 8260 Volatile Organics	
	07/23/09	TP 2-B	EPA 8270 Acid/Base Neutrals	
64386-2	07/23/09	TP 3A	EPA 8260 Volatile Organics	
	07/23/09	TP 3A	EPA 8270 Acid/Base Neutrals	
64386-3	07/23/09	TP-5A	EPA 8260 Volatile Organics	
	07/23/09	TP-5A	EPA 8270 Acid/Base Neutrals	
64386-4	07/23/09	TP-6A	EPA 8260 Volatile Organics	
	07/23/09	TP-6A	EPA 8270 Acid/Base Neutrals	

Sample Receipt Exceptions: None

Analytics Environmental Laboratory is certified by the states of New Hampshire, Maine, Massachusetts, Connecticut, Rhode Island, New York, Virginia, Maryland, and is validated by the U.S. Navy (NFESC). A list of actual certified parameters is available upon request.

If you have any further question on the analytical methods or these results, do not hesitate to call.

Authorized signature

Stephen L. Knollmeyer Lab. Director

Date

This report shall not be reproduced, except in full, without the written consent of Analytics Environmental Laboratory, LLC.

Mr. Herb Kodis Maine Environmental Laboratory, Inc. PO Box 1107 Yarmouth, ME 04096-1107

CLIENT SAMPLE ID

Project Name:

SME 833-09

Project Number:

Field Sample ID: TP 2-B

August 3, 2009

SAMPLE DATA

Lab Sample ID:

Matrix:

64386-1 Solid

Percent Solid:

81

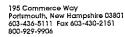
Dilution Factor:

125

Collection Date:

07/23/09

Lab Receipt Date: 07/24/09


Analysis Date: 07/27/09

n Result g μg/kg U U U U U U U U U U U U U U U U U U	COMPOUND 1,3-Dichloropropane cis-1,3-Dichloropropene trans-1,3-Dichloropropene 2,2-Dichloropropane 1,1-Dichloropropene Ethylbenzene Hexachlorobutadiene Isopropylbenzene p-isopropyltoluene Methyl-tert-butyl ether (MTBE) Naphthalene n-Propylbenzene		Result µg/kg U U U U U U U U U U U U U U U U U U
Eg μg/kg U U U U U U U U U U U U U	1,3-Dichloropropane cis-1,3-Dichloropropene trans-1,3-Dichloropropene 2,2-Dichloropropane 1,1-Dichloropropene Ethylbenzene Hexachlorobutadiene Isopropylbenzene p-isopropyltoluene Methylene Chloride Methyl-tert-butyl ether (MTBE) Naphthalene	125 125 125 125 125 125 125 125 125 125	μg/kg U U U U U U U U U U U U U
U U U U U U U U U U	1,3-Dichloropropane cis-1,3-Dichloropropene trans-1,3-Dichloropropene 2,2-Dichloropropane 1,1-Dichloropropene Ethylbenzene Hexachlorobutadiene Isopropylbenzene p-isopropyltoluene Methylene Chloride Methyl-tert-butyl ether (MTBE) Naphthalene	125 125 125 125 125 125 125 125 125 125	U U U U U U U U
U U U U U U U U U	cis-1,3-Dichloropropene trans-1,3-Dichloropropene 2,2-Dichloropropane 1,1-Dichloropropene Ethylbenzene Hexachlorobutadiene Isopropylbenzene p-isopropyltoluene Methylene Chloride Methyl-tert-butyl ether (MTBE) Naphthalene	125 125 125 125 125 125 125 125 125 125	U U U U U U U U
U U U U U U U U	trans-1,3-Dichloropropene 2,2-Dichloropropane 1,1-Dichloropropene Ethylbenzene Hexachlorobutadiene Isopropylbenzene p-isopropyltoluene Methylene Chloride Methyl-tert-butyl ether (MTBE) Naphthalene	125 125 125 125 125 125 125 125 625 94	U U U U U U U
U U U U U U U U	2,2-Dichloropropane 1,1-Dichloropropene Ethylbenzene Hexachlorobutadiene Isopropylbenzene p-isopropyltoluene Methylene Chloride Methyl-tert-butyl ether (MTBE) Naphthalene	125 125 125 125 125 125 125 625 94	U U U U U U
U U U U U U U	1,1-Dichloropropene Ethylbenzene Hexachlorobutadiene Isopropylbenzene p-isopropyltoluene Methylene Chloride Methyl-tert-butyl ether (MTBE) Naphthalene	125 125 125 125 125 125 625 94	บ บ บ บ บ
U U U U U U U	Ethylbenzene Hexachlorobutadiene Isopropylbenzene p-isopropyltoluene Methylene Chloride Methyl-tert-butyl ether (MTBE) Naphthalene	125 125 125 125 125 625 94	บ บ บ บ
U U U U U U U	Hexachlorobutadiene Isopropylbenzene p-isopropyltoluene Methylene Chloride Methyl-tert-butyl ether (MTBE) Naphthalene	125 125 125 625 94	U U U U
. U U U U U U U	Isopropylbenzene p-isopropyltoluene Methylene Chloride Methyl-tert-butyl ether (MTBE) Naphthalene	125 125 625 94	U U U
บ บ บ บ บ	p-isopropyltoluene Methylene Chloride Methyl-tert-butyl ether (MTBE) Naphthalene	125 625) 94	Ū U
U U U U U	Methylene Chloride Methyl-tert-butyl ether (MTBE) Naphthalene	625 94	Ŭ
U U U U	Methyl-tert-butyl ether (MTBE) Naphthalene) 94	_
U U U	Naphthalene	,	* *
U U		107	U
U		125	U
_		125	U
	Styrene	125	U
U	1,1,1,2-Tetrachloroethane	125	U
U	1,1,2,2-Tetrachloroethane	94	Ū
Ū	Tetrachloroethene	125	Ü
Ü	Toluene	125	Ü
U	1,2,3-Trichlorobenzene	125	Ü
Ü	1.2.4-Trichlorobenzene	125	U
Ü	1,1,1-Trichloroethane	125	U
U	1.1.2-Trichloroethane	94	U
U	Trichloroethene	125	U
U	Trichlorofluoromethane	125	U
			U
			U
-			U
			_
			U
			U
			U
-			U
			U
='	2		U
=			U
_			U
<u> </u>		125	U
* *		<i>a</i>	97
d8-Toluene			86
	d8-Toluene	U 1,2,4-Trimethylbenzene U 1,3,5-Trimethylbenzene U Vinyl Chloride U o-Xylene U m,p-Xylene U Diethyl ether U 2-Hexanone U Methyl isobutyl ketone U Di-isopropyl ether (DIPE) U Ethyl t-butyl ether (ETBE) U 1,3,5-Trichlorobenzene urrogate Standard Recovery d8-Toluene 84 % Brome	U 1,2,4-Trimethylbenzene 125 U 1,3,5-Trimethylbenzene 125 U Vinyl Chloride 125 U o-Xylene 125 U m,p-Xylene 125 U Diethyl ether 125 U 2-Hexanone 1250 U Methyl isobutyl ketone 1250 U Di-isopropyl ether (DIPE) 125 U Ethyl t-butyl ether (ETBE) 125 U 1,3,5-Trichlorobenzene 125 urrogate Standard Recovery d8-Toluene 84 % Bromofluorobenzene

METHODOLOGY: Sample analysis was conducted according to: Test Methods for Evaluating Solid Waste, SW-846 Method 8260B.

COMMENTS: Results are expressed on a dry weight basis. Sample collection and analysis in accordance with SW-846 method 5035A.

SME 833-09

TP 2-B

Mr. Herb Kodis Maine Environmental Laboratory, Inc. PO Box 1107 Yarmouth, ME 04096-1107

CLIENT SAMPLE ID

Project Name:

Project Number:

Field Sample ID:

August 4, 2009

SAMPLE DATA

Lab Sample ID:

64386-1 Solid

Matrix:

Percent Solid: Dilution Factor: 81 1.2

Collection Date:

07/23/09

Lab Receipt Date:

Extraction Date:

07/24/09 07/31/09

Analysis Date:

08/02/09

PAGE ONE

				TAG	EONL
	ANALYTICAL	RESULTS SEI	MI-VOLATILE ORGANICS		
ACID COMPOUND	Quantitation Limit μ g/kg	Result μg/kg	ACID COMPOUND	Quantitation Limit μg/kg	Result µg/kg
2-Chlorophenol	420	U	Pentachlorophenol	840	U
4-Chloro-3-methylphenol	840	U	Phenol	840	U
2,4-Dichlorophenol	420	U	2,4,5-Trichlorophenol	600	U
2,4-Dimethylphenol	420	U	2,4,6-Trichlorophenol	420	U
2,4-dinitrophenol	840	U	Benzoic Acid	1200	U
4,6-Dinitro-2-methylphenol	840	U	2-Methylphenol	840	U
2-Nitrophenol	840	U	3+4-Methylphenol	840	U
2,6-Dichlorophenol	600	U ·	Benzyl Alcohol	840	U
4-Nitrophenol	840	U	2,3,4,6-Tetrachlorophenol	840	U

Acid Surrogate Standard Recovery

2-Fluorophenol

57

d5-Phenol

% 61

2,4,6-Tribromophenol

76 %

BASE NEUTRAL COMPOUND	Quantitation Limit µg/kg	Result µg/kg	BASE NEUTRAL COMPOUND	Quantitation Limit μ g/kg	Result µg/kg
1,2-Dichlorobenzene	600	U	Hexachlorobenzene	420	U
1,3-Dichlorobenzene	600	U	* Benzidine	600	U
1,4-Dichlorobenzene	420	U	3,3'-Dichlorobenzidine	600	U
2,4-Dinitrotoluene	420	U	Azobenzene	600	U
2,6-Dinitrotoluene	600	U	Bis(2-chloroethoxy)methane	600	U
Nitrobenzene	600	U	bis(2-chloroethyl) ether	420	U
Hexachlorobutadiene	600	U	bis(2-chloroisopropyl)ether	420	U
Dimethyl Phthalate	600	U	4-bromophenyl phenyl ether	600	U
Di-n-butyl phthalate	600	U	Butyl benzyl phthalate	600	U
di-n-octyl-phthalate	600	U	4-Chlorophenyl phenyl ether	600	U
Bis (2-ethylhexyl) phthalate	600	U	Diethyl Phthalate	600	U
1,2,4-Trichlorobenzene	600	U	Hexachlorocyclopentadiene	600	U

METHODOLOGY:

Sample analysis was conducted according to: Test Methods for Evaluating Solid Waste, SW-846 Method 8270C.

Authorized signature Mylulul

8270/625 layout

SME 833-09

TP 2-B

195 Commerce Way Portsmouth, New Hampshire 03801 603-436-5111 Fax 603-430-2151 800-929-9906

Mr. Herb Kodis Maine Environmental Laboratory, Inc. PO Box 1107

CLIENT SAMPLE ID

Yarmouth, ME 04096-1107

Project Name:

Project Number:

Field Sample ID:

August 4, 2009 SAMPLE DATA

Lab Sample ID:

64386-1

Matrix:

Solid

Percent Solid:

81

Dilution Factor:

1.2

Collection Date:

07/23/09

Lab Receipt Date:

07/24/09

Extraction Date:

07/31/09

Analysis Date:

08/02/09

PAGE TWO

	ANALYTICAL	RESULTS SI	EMI-VOLATILE ORGANICS			
BASE NEUTRAL COMPOUND	Quantitation Limit μ g/kg	Result µg/kg	BASE NEUTRAL COMPOUND	Quantitation Limit μg/kg	Result μg/kg	٠
Acenaphthene	320	U	N-nitrosodimethylamine	600	U	
Acenaphthylene	320	U	N-nitroso-di-n-propylamine	600	U	
Anthracene	320	U	n-nitrosodiphenylamine	600	U	
Benzo[a]anthracene	320	U	Pyridine	600	U	
Benzo[a] pyrene	320	163 J	2-Methylnaphthalene	320	U	
Benzo[b] fluoranthene	320	222 J	2-Chloronaphthalene	320	U	
Benzo[k] fluoranthene	320	U	Naphthalene	320	U	
Benzo(g,h,i) perylene	320	U	Phenanthrene	320	U	
Chrysene	320	160 J	Dibenzofuran	320	U	
Dibenz [a,h] anthracene	320	U	Aniline	600	U	
Fluoranthene	320	277 J	4-Chloroaniline	600	U	
Fluorene	320	U	2-Nitroaniline	600	U	
Indeno [1,2,3-cd] pyrene	320	U	3-Nitroaniline	600	U	
Pyrene	320	286 J	4-Nitroaniline	600	U	
Hexachloroethane	420	U	Carbazole	320	U	
Isophorone	600	U				
	Base Neu	itral Surrogat	e Standard Recovery			
2-Fluorobiphenyl 66 %	,	d5-nitrobenzen	e 64 %	d14-p-terphenyl	68	%
U=Undetect	ed J=Estimated	E=Exceeds	Calibration Range B=Detected in			

METHODOLOGY:

Sample analysis was conducted according to: Test Methods for Evaluating Solid Waste, SW-846 Method 8270C.

COMMENTS:

*Due to the reactive nature of this compound, the Benzidine quantitation limit is estimated.

Results are expressed on a dry weight basis.

8270/625 layout

Authorized signature Multiple.

Mr. Herb Kodis Maine Environmental Laboratory, Inc. PO Box 1107 Yarmouth, ME 04096-1107

CLIENT SAMPLE ID

Project Name:

Project Number:

Field Sample ID: TP 3A

SME 833-09

August 3, 2009 SAMPLE DATA

Lab Sample ID:

64386-2 Solid

Matrix:

80

Percent Solid: **Dilution Factor:**

118

Collection Date:

07/23/09

Lab Receipt Date: 07/24/09

			Analysis Date: 07	7/27/09		
ANA	LYTICAL RES	ULTS VOLA	TILE ORGANICS			
COMPOUND	Quantitation Limit µg/kg	Result µg/kg	COMPOUND	Quantitation Limit μg/kg	Resu µg/k	
Вепzепе	118	U	1,3-Dichloropropane	118	U	
Bromobenzene	118	U	cis-1,3-Dichloropropene	118	U	
Bromochloromethane	118	U	trans-1,3-Dichloropropene	118	U	
Bromodichloromethane	89	U	2,2-Dichloropropane	118	U	
Bromoform	89	U	1,1-Dichloropropene	118	U	
Bromomethane	118	U	Ethylbenzene	118	U	
n-butylbenzene	118	U	Hexachlorobutadiene	118	U	
sec-butylbenzene	118	U	Isopropylbenzene	118	U	
tert-butylbenzene	118	U	p-isopropyltoluene	118	U	
Carbon Tetrachloride	118	U	Methylene Chloride	591	U	
Chlorobenzene	118	U	Methyl-tert-butyl ether (MTBE)	89	U	
Chloroethane	118	U	Naphthalene	118	U	
Chloroform	89	U	n-Propylbenzene	118	U	
Chloromethane	118	U	Styrene	118	U	
2-Chlorotoluene	118	U	1,1,1,2-Tetrachloroethane	118	U	
4-Chlorotoluene	118	U	1,1,2,2-Tetrachloroethane	89	U	
Dibromochloromethane	89	U	Tetrachloroethene	118	Ū	
1,2-Dibromo-3-chloropropane	118	U	Toluene	118	Ū	
1.2-Dibromoethane	89	Ü	1,2,3-Trichlorobenzene	118	Ū	
Dibromomethane	118	U	1.2.4-Trichlorobenzene	118	Ũ	
1.2-Dichlorobenzene	118	Ū	1,1,1-Trichloroethane	118	Ŭ	
1.3-Dichlorobenzene	118	Ū	1.1.2-Trichloroethane	89	Ŭ	
l 4-Dichlorobenzene	118	Ū	Trichloroethene	118	Ū	
Dichlorodifluoromethane	118	Ü	Trichlorofluoromethane	118	Ū	
1.1-Dichloroethane	118	Ū	1,2,3-Trichloropropane	118	Ü	
1.2-Dichloroethane	89	Ū	1,2,4-Trimethylbenzene	118	Ŭ	
I.1-Dichloroethene	89	Ü	1,3,5-Trimethylbenzene	118	Ū	
cis-1.2-Dichloroethene	118	U	Vinyl Chloride	118	U	
trans-1,2-Dichloroethene	118	Ŭ	o-Xylene	118	Ü	
1,2-Dichloropropane	89	Ū	m,p-Xylene	118	U	
Acetone	1180	U	Diethyl ether	118	U	
Carbon Disulfide	118	U	2-Hexanone	1180	U	
Carbon Disumde Fetrahydrofuran	591	U	Methyl isobutyl ketone	1180	U	
Methyl ethyl ketone	1180	U	Di-isopropyl ether (DIPE)	118	U	
:-Butyl alcohol (TBA)	2370	U	Ethyl t-butyl ether (ETBE)	118	U	
t-Butyl alconol (TBA)	2370 118	U	1,3,5-Trichlorobenzene	118	Ŭ	
-Anyt memyi emei (TAME)		gate Standard F	- 1- 1-			
d4-1,2-Dichloroethane 84	Surros %	d8-Toluene		fluorobenzene	85	q
	J=Estimated		alibration Range B=Detected			

METHODOLOGY: Sample analysis was conducted according to: Test Methods for Evaluating Solid Waste, SW-846 Method 8260B.

COMMENTS: Results are expressed on a dry weight basis. Sample collection and analysis in accordance with SW-846 method 5035A.

SAMPLE DATA

Solid

August 4, 2009

Mr. Herb Kodis Maine Environmental Laboratory, Inc. PO Box 1107 Yarmouth, ME 04096-1107

04096-1107 Lab Sample ID: 64386-2

Matrix:

CLIENT SAMPLE ID

Percent Solid: 80

Name: SME 833-09

Project Name: SME 833-09

Dilution Factor: 1.2

Collection Date: 07/23/09

Project Number: 07/24/00

Field Sample ID: TP 3A Lab Receipt Date: 07/24/09

Extraction Date: 07/31/09

Analysis Date: 08/02/09

PAGE ONE

ANALYTICAL RESULTS SEMI-VOLATILE ORGANICS								
ACID COMPOUND	Quantitation Limit μg/kg	Result µg/kg	ACID COMPOUND	Quantitation Limit μg/kg	Result μg/kg			
2-Chlorophenol	430	U	Pentachlorophenol	850	U			
4-Chloro-3-methylphenol	850	U	Phenol	850	U			
2,4-Dichlorophenol	430	U	2,4,5-Trichlorophenol	610	U			
2,4-Dimethylphenol	430	U	2,4,6-Trichlorophenol	430	U			
2,4-dinitrophenol	850	U	Benzoic Acid	1200	U			
4,6-Dinitro-2-methylphenol	850	U	2-Methylphenol	850	U			
2-Nitrophenol	850	U	3+4-Methylphenol	850	U			
2,6-Dichlorophenol	610	U	Benzyl Alcohol	850	U			
4-Nitrophenol	850	U	2,3,4,6-Tetrachlorophenol	850	U			

Acid Surrogate Standard Recovery

2-Fluorophenol 59 % d5-Phenol 60 % 2,4,6-Tribromophenol 72 %

BASE NEUTRAL COMPOUND	Quantitation Limit μ g/kg	Result μg/kg	BASE NEUTRAL COMPOUND	Quantitation Limit µg/kg	Result µg/kg
1,2-Dichlorobenzene	610	Ŭ	Hexachlorobenzene	430	U
1,3-Dichlorobenzene	610	U	* Benzidine	610	U
1,4-Dichlorobenzene	430	U	3,3'-Dichlorobenzidine	610	U
2,4-Dinitrotoluene	430	U	Azobenzene	610	U
2,6-Dinitrotoluene	610	U	Bis(2-chloroethoxy)methane	610	U
Nitrobenzene	610	U	bis(2-chloroethyl) ether	430	U
Hexachlorobutadiene	610	U	bis(2-chloroisopropyl)ether	430	U
Dimethyl Phthalate	610	U	4-bromophenyl phenyl ether	610	U
Di-n-butyl phthalate	610	U	Butyl benzyl phthalate	610	U
di-n-octyl-phthalate	610	U	4-Chlorophenyl phenyl ether	610	U
Bis (2-ethylhexyl) phthalate	610	U	Diethyl Phthalate	610	U
1,2,4-Trichlorobenzene	610	U	Hexachlorocyclopentadiene	610	U

METHODOLOGY: Sample analysis was conducted according to: Test Methods for Evaluating Solid Waste, SW-846 Method 8270C.

Authorized signature Mulull

8270/625 layout

SME 833-09

TP 3A

195 Commerce Way Portsmouth, New Hampshire 03801 603-436-5111 Fax 603-430-2151 800-929-9906

Mr. Herb Kodis Maine Environmental Laboratory, Inc. PO Box 1107 Yarmouth, ME 04096-1107

Project Name:

Project Number:

Field Sample ID:

CLIENT SAMPLE ID

August 4, 2009 SAMPLE DATA

Lab Sample ID:

64386-2

Matrix:

Solid

80

Percent Solid:

1.2

Dilution Factor: Collection Date:

07/23/09

07/24/09

Lab Receipt Date: **Extraction Date:**

07/31/09

Analysis Date:

08/02/09

PAGE TWO

	ANALYTICAL	RESULTS SI	MI-VOLATILE ORGANICS		
BASE NEUTRAL COMPOUND	Quantitation Limit μ g/kg	Result μg/kg	BASE NEUTRAL COMPOUND	Quantitation Limit μg/kg	Result μg/kg
Acenaphthene	330	U	N-nitrosodimethylamine	610	U
Acenaphthylene	330	U	N-nitroso-di-n-propylamine	610	U
Anthracene	330	U	n-nitrosodiphenylamine	610	U
Benzo[a]anthracene	330	U	Pyridine	610	U
Benzo[a] pyrene	330	U	2-Methylnaphthalene	330	U
Benzo[b] fluoranthene	330	174 J	2-Chloronaphthalene	330	U
Benzo[k] fluoranthene	330	U	Naphthalene	330	U
Benzo(g,h,i) perylene	330	U	Phenanthrene	330	U
Chrysene	330	\mathbf{U}	Dibenzofuran	330	U
Dibenz [a,h] anthracene	330	U	Aniline	610	U
Fluoranthene	330	264 J	4-Chloroaniline	610	U
Fluorene	330	U	2-Nitroaniline	610	U
Indeno [1,2,3-cd] pyrene	330	U	3-Nitroaniline	610	U
Pyrene	330	307 J	4-Nitroaniline	610	U
Hexachloroethane	430	U	Carbazole	330	U
Isophorone	610	U			
	Base Neu	itral Surrogat	e Standard Recovery		
2-Fluorobiphenyl 66 %	,	d5-nitrobenzen	e 63 %	d14-p-terphenyl	70 9
U=Undetect	ed J=Estimated	E=Exceeds	Calibration Range B=Detected in	,	

METHODOLOGY:

Sample analysis was conducted according to: Test Methods for Evaluating Solid Waste, SW-846 Method 8270C.

COMMENTS:

*Due to the reactive nature of this compound, the Benzidine quantitation limit is estimated.

Results are expressed on a dry weight basis.

8270/625 layout

Authorized signature Mullill

Mr. Herb Kodis Maine Environmental Laboratory, Inc. PO Box 1107 Yarmouth, ME 04096-1107

August 3, 2009 SAMPLE DATA

Lab Sample ID:

64386-3 Solid

Matrix:

Percent Solid:

82

Dilution Factor: **Collection Date:**

108

Lab Receipt Date: 07/24/09

07/23/09

Project Number:

Project Name:

Field Sample ID: TP-5A

CLIENT SAMPLE ID

SME 833-09

Analysis Date:

07/29/09

			Analysis Date:	07/29/09		
AN	ALYTICAL RES	ULTS VOLA	TILE ORGANICS			
	Quantitation	Result		Quantitation	Resu	
COMPOUND	Limit μg/kg	μg/kg	COMPOUND	Limit μg/kg	μg/k	g
Benzene	108	U	1,3-Dichloropropane	108	U	
Bromobenzene	108	U	cis-1,3-Dichloropropene	108	U	
Bromochloromethane	108	U	trans-1,3-Dichloropropene	108	U	
Bromodichloromethane	81	U	2,2-Dichloropropane	108	U	
Bromoform	81	U	1,1-Dichloropropene	108	U	
Bromomethane	108	U	Ethylbenzene	108	U	
n-butylbenzene	108	U	Hexachlorobutadiene	108	U	
sec-butylbenzene	108	U	Isopropylbenzene	108	U	
tert-butylbenzene	108	U	p-isopropyltoluene	108	U	
Carbon Tetrachloride	108	U	Methylene Chloride	542	U	
Chlorobenzene	108	U	Methyl-tert-butyl ether (MTB	E) 81	U	
Chloroethane	108	U	Naphthalene	108	U	
Chloroform	81	U	n-Propylbenzene	108	U	
Chloromethane	108	U	Styrene	108	Ū	
2-Chlorotoluene	108	U	1,1,1,2-Tetrachloroethane	108	U	
4-Chlorotoluene	108	U	1,1,2,2-Tetrachioroethane	81	Ū	
Dibromochloromethane	81	Ū	Tetrachloroethene	108	Ü	
1,2-Dibromo-3-chloropropane	108	Ū	Toluene	108	Ŭ	
1,2-Dibromoethane	81	Ū	1,2,3-Trichlorobenzene	108	Ŭ	
Dibromomethane	108	Ū	1,2,4-Trichlorobenzene	108	Ü	
1.2-Dichlorobenzene	108	Ü	1,1,1-Trichloroethane	108	Ü	
1.3-Dichlorobenzene	108	Ŭ	1,1,2-Trichloroethane	81	Ü	
1.4-Dichlorobenzene	108	Ü	Trichloroethene	108	Ü	
Dichlorodifluoromethane	108	U	Trichlorofluoromethane	108	Ü	
1.1-Dichloroethane	108	U	1,2,3-Trichloropropane	108	U	
1.2-Dichloroethane	81	Ū	1,2,4-Trimethylbenzene	108	Ü	
1,1-Dichloroethene	81	U	1,3,5-Trimethylbenzene	108	Ŭ	
cis-1,2-Dichloroethene	108	U	Vinyl Chloride	108	U	
trans-1.2-Dichloroethene	108	Ü	o-Xylene	108	U	
1,2-Dichloropropane	81	U	m,p-Xylene	108	Ŭ	
Acetone	1080	U	Diethyl ether	108	U	
Acetone Carbon Disulfide	1080	U	2-Hexanone	1080	U	
	542	U	Methyl isobutyl ketone	1080	U	
Tetrahydrofuran	1080	U	Di-isopropyl ether (DIPE)	1080	U	
Methyl ethyl ketone	2170			108	U	
t-Butyl alcohol (TBA)	108	U U	Ethyl t-butyl ether (ETBE) 1,3,5-Trichlorobenzene	108	U	
t-Amyl methyl ether (TAME)		gate Standard R		100		
d4-1,2-Dichloroethane 74	%	d8-Toluene		nofluorobenzene	76	%
U=Undetected	J=Estimated	E-Exceeds Ca	libration Range B=Detecte	d in Blank		

METHODOLOGY: Sample analysis was conducted according to: Test Methods for Evaluating Solid Waste, SW-846 Method 8260B.

COMMENTS: Results are expressed on a dry weight basis. Sample collection and analysis in accordance with SW-846 method 5035A.

Authorized signature Mulufull

SME 833-09

TP-5A

Mr. Herb Kodis Maine Environmental Laboratory, Inc. PO Box 1107 Yarmouth, ME 04096-1107

CLIENT SAMPLE ID

Project Name:

Project Number:

Field Sample ID:

August 4, 2009

SAMPLE DATA

Lab Sample ID:

64386-3

Matrix:

Solid

Percent Solid:

82

Dilution Factor:

1.2

Collection Date:

07/23/09

Lab Receipt Date:

07/24/09

Extraction Date:

07/31/09

Analysis Date:

08/02/09

PAGE ONE

	ANALYTICAL	RESULTS SE	MI-VOLATILE ORGANICS		
ACID COMPOUND	Quantitation Limit µg/kg	Result μg/kg	ACID COMPOUND	Quantitation Limit μg/kg	Result μg/kg
2-Chlorophenol	420	U	Pentachlorophenol	840	U
4-Chloro-3-methylphenol	840	U	Phenol	840	U
2,4-Dichlorophenol	420	U	2,4,5-Trichlorophenol	600	U
2,4-Dimethylphenol	420	U	2,4,6-Trichlorophenol	420	U
2,4-dinitrophenol	840	U	Benzoic Acid	1200	U
4,6-Dinitro-2-methylphenol	840	U	2-Methylphenol	840	U
2-Nitrophenol	840	U	3+4-Methylphenol	840	U
2,6-Dichlorophenol	600	U	Benzyl Alcohol	840	U
4-Nitrophenol	840	U	2,3,4,6-Tetrachlorophenol	840	U

Acid Surrogate Standard Recovery

2-Fluorophenol

62

d5-Phenol

% 64

2,4,6-Tribromophenol

70 %

BASE NEUTRAL COMPOUND	Quantitation Limit µg/kg	Result µg/kg	BASE NEUTRAL COMPOUND	Quantitation Limit µg/kg	Result µg/kg
1,2-Dichlorobenzene	600	U	Hexachlorobenzene	420	U
1,3-Dichlorobenzene	600	U	* Benzidine	600	U
1,4-Dichlorobenzene	420	U	3,3'-Dichlorobenzidine	600	U
2,4-Dinitrotoluene	420	U	Azobenzene	600	U
2,6-Dinitrotoluene	600	U	Bis(2-chloroethoxy)methane	600	U
Nitrobenzene	600	U	bis(2-chloroethyl) ether	420	U
Hexachlorobutadiene	600	U	bis(2-chloroisopropyl)ether	420	U
Dimethyl Phthalate	600	U	4-bromophenyl phenyl ether	600	U
Di-n-butyl phthalate	600	U	Butyl benzyl phthalate	600	U
di-n-octyl-phthalate	600	U	4-Chlorophenyl phenyl ether	600	U
Bis (2-ethylhexyl) phthalate	600	U	Diethyl Phthalate	600	U
1,2,4-Trichlorobenzene	600	U	Hexachlorocyclopentadiene	600	U
U=Undetected	J=Estimated	E=Exceeds	Calibration Range B=Detected in		

METHODOLOGY:

Sample analysis was conducted according to: Test Methods for Evaluating Solid Waste, SW-846 Method 8270C.

Authorized signature Mulbull

8270/625 layout

SME 833-09

TP-5A

195 Commerce Way Portsmouth, New Hampshire 03801 603-436-5111 Fax 603-430-2151 800-929-9906

Mr. Herb Kodis Maine Environmental Laboratory, Inc. PO Box 1107

CLIENT SAMPLE ID

Yarmouth, ME 04096-1107

Project Name:

Project Number:

Field Sample ID:

SAMPLE DATA

64386-3

August 4, 2009

Matrix:

Solid

Percent Solid:

82 1.2

Dilution Factor:

Lab Sample ID:

07/23/09

Collection Date:

Lab Receipt Date: **Extraction Date:**

07/24/09 07/31/09

08/02/09

Analysis Date:

PAGE TWO

	ANALYTICAL	RESULTS SI	EMI-VOLATILE ORGANICS			
BASE NEUTRAL COMPOUND	Quantitation Limit μ g/kg	Result $\mu \mathrm{g/kg}$	BASE NEUTRAL COMPOUND	Quantitation Limit μg/kg	Result µg/kg	
Acenaphthene	320	U	N-nitrosodimethylamine	600	U	
Acenaphthylene	320	196 J	N-nitroso-di-n-propylamine	600	U	
Anthracene	320	203 J	n-nitrosodiphenylamine	600	U	
Benzo[a]anthracene	320	237 J	Pyridine	600	U	
Benzo[a] pyrene	320	226 J	2-Methylnaphthalene	320	U	
Benzo[b] fluoranthene	320	283 J	2-Chloronaphthalene	320	U	
Benzo[k] fluoranthene	320	U	Naphthalene	320	718	
Benzo(g,h,i) perylene	320	U	Phenanthrene	320	593	
Chrysene	320	225 J	Dibenzofuran	320	U	
Dibenz [a,h] anthracene	320	U	Aniline	600	U	
Fluoranthene	320	581	4-Chloroaniline	600	U	
Fluorene	320	U	2-Nitroaniline	600	U	
Indeno [1,2,3-cd] pyrene	320	U	3-Nitroaniline	600	U	
Pyrene	320	582	4-Nitroaniline	600	U	
Hexachloroethane	420	U	Carbazole	320	U	
Isophorone	600	U				
	Base Net	ıtral Surrogat	e Standard Recovery			
2-Fluorobiphenyl 66 %)	d5-nitrobenzer	e 64 %	d14-p-terphenyl	72	%
U=Undetect	ed J=Estimated	E=Exceeds	Calibration Range B=Detected in			

METHODOLOGY:

Sample analysis was conducted according to: Test Methods for Evaluating Solid Waste, SW-846 Method 8270C.

COMMENTS:

*Due to the reactive nature of this compound, the Benzidine quantitation limit is estimated.

Results are expressed on a dry weight basis.

8270/625 layout

Authorized signature Mullinbull

Mr. Herb Kodis Maine Environmental Laboratory, Inc. PO Box 1107 Yarmouth, ME 04096-1107

CLIENT SAMPLE ID

August 3, 2009

SAMPLE DATA

Lab Sample ID:

64386-4 Solid

Matrix:

Percent Solid:

84 113

Dilution Factor: Collection Date:

07/23/09

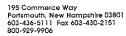
Lab Receipt Date:

07/24/09

Analysis Date:

07/27/09

Project Name: SME 833-09


Project Number: Field Sample ID: TP-6A

ANALYTICAL RESULTS VOLATILE ORGANICS Quantitation Ouantitation Result Result Limit $\mu g/kg$ $\overline{\text{Limit } \mu \text{ g/kg}}$ μg/kg $\mu g/kg$ **COMPOUND COMPOUND** U 113 U 113 Benzene 1,3-Dichloropropane 113 113 II U Bromobenzene cis-1,3-Dichloropropene 113 П 113 IJ Bromochloromethane trans-1,3-Dichloropropene 85 U 113 U Bromodichloromethane 2,2-Dichloropropane 85 U 113 U Bromoform 1,1-Dichloropropene U 113 Bromomethane 113 Ethylbenzene U U 113 Ū 113 n-butylbenzene Hexachlorobutadiene 113 U 113 U sec-butylbenzene Isopropylbenzene U 113 U 113 tert-butylbenzene p-isopropyltoluene 564 U 113 U Carbon Tetrachloride Methylene Chloride Ū 85 U Methyl-tert-butyl ether (MTBE) Chlorobenzene 113 113 U U 113 Chloroethane Naphthalene 113 U 85 U Chloroform n-Propylbenzene 113 113 U Chloromethane Styrene U 113 U 2-Chlorotoluene 113 1.1.1.2-Tetrachloroethane U 85 4-Chlorotoluene 113 U 1.1.2.2-Tetrachloroethane U 113 Dibromochloromethane 85 U Tetrachloroethene U 113 1,2-Dibromo-3-chloropropane 113 U Toluene U 1,2-Dibromoethane 85 U 1,2,3-Trichlorobenzene 113 U Dibromomethane 113 U 1,2,4-Trichlorobenzene 113 U 113 1,2-Dichlorobenzene 113 U 1,1,1-Trichloroethane U 85 1,3-Dichlorobenzene 113 U 1,1,2-Trichloroethane U 113 1,4-Dichlorobenzene 113 U Trichloroethene U 113 Dichlorodifluoromethane 113 U Trichlorofluoromethane U 1.1-Dichloroethane 113 U 1.2.3-Trichloropropane 113 U 113 1.2-Dichloroethane 85 U 1.2.4-Trimethylbenzene U 85 U 1.3.5-Trimethylbenzene 113 П 1.1-Dichloroethene 113 U 113 cis-1.2-Dichloroethene Vinyl Chloride U U 113 trans-1,2-Dichloroethene 113 o-Xylene U U 113 1,2-Dichloropropane 85 m,p-Xylene Ħ Acetone 1130 U Diethyl ether 113 U Carbon Disulfide 113 U 2-Hexanone 1130 U Tetrahydrofuran U 1130 U 564 Methyl isobutyl ketone 113 U 1130 U Di-isopropyl ether (DIPE) Methyl ethyl ketone 2260 Ū Ethyl t-butyl ether (ETBE) 113 U t-Butyl alcohol (TBA) U 1,3,5-Trichlorobenzene 113 t-Amyl methyl ether (TAME) 113 U Surrogate Standard Recovery Bromofluorobenzene 85 % d4-1,2-Dichloroethane % d8-Toluene 83 0/2 E=Exceeds Calibration Range B=Detected in Blank U=Undetected J=Estimated

Sample analysis was conducted according to: Test Methods for Evaluating Solid Waste, SW-846 Method 8260B. METHODOLOGY:

COMMENTS: Results are expressed on a dry weight basis. Sample collection and analysis in accordance with SW-846 method 5035A.

Authorized signature Mulbell

SME 833-09

TP-6A

Mr. Herb Kodis Maine Environmental Laboratory, Inc. PO Box 1107 Yarmouth, ME 04096-1107

CLIENT SAMPLE ID

Project Name:

Project Number:

Field Sample ID:

August 5, 2009

SAMPLE DATA

Lab Sample ID:

64386-4 RX

Matrix:

Solid

Percent Solid:

84

Dilution Factor:

1.2

Collection Date:

07/23/09

Lab Receipt Date:

07/24/09

Extraction Date:

08/04/09

08/05/09

Analysis Date:

PAGE ONE

	ANALYTICAL	RESULTS SE	MI-VOLATILE ORGANICS		
ACID COMPOUND	Quantitation Limit μg/kg	Result μg/kg	ACID COMPOUND	Quantitation Limit μg/kg	Result µg/kg
2-Chlorophenol	410	U	Pentachlorophenol	830	U
4-Chloro-3-methylphenol	830	U	Phenol	830	U
2,4-Dichlorophenol	410	U	2,4,5-Trichlorophenol	590	U
2,4-Dimethylphenol	410	U	2,4,6-Trichlorophenol	410	U
2,4-dinitrophenol	830	U	Benzoic Acid	1200	U
4,6-Dinitro-2-methylphenol	830	U	2-Methylphenol	830	U
2-Nitrophenol	830	U	3+4-Methylphenol	830	U
2,6-Dichlorophenol	590	U	Benzyl Alcohol	830	U
4-Nitrophenol	830	U	2,3,4,6-Tetrachlorophenol	830	U

Acid Surrogate Standard Recovery

2-Fluorophenol

49 % d5-Phenol

54 % 2,4,6-Tribromophenol

68 %

BASE NEUTRAL COMPOUND	Quantitation Limit µg/kg	Result µg/kg	BASE NEUTRAL COMPOUND	Quantitation Limit µg/kg	Result μg/kg
1,2-Dichlorobenzene	590	U	Hexachlorobenzene	410	U
1,3-Dichlorobenzene	590	U	* Benzidine	590	U
1,4-Dichlorobenzene	410	U	3,3'-Dichlorobenzidine	590	U
2,4-Dinitrotoluene	410	U	Azobenzene	590	U
2,6-Dinitrotoluene	590	U	Bis(2-chloroethoxy)methane	590	U
Nitrobenzene	590	U	bis(2-chloroethyl) ether	410	U
Hexachlorobutadiene	590	U	bis(2-chloroisopropyl)ether	410	U
Dimethyl Phthalate	590	U	4-bromophenyl phenyl ether	590	U
Di-n-butyl phthalate	590	U	Butyl benzyl phthalate	590	U
di-n-octyl-phthalate	590	U	4-Chlorophenyl phenyl ether	590	U
Bis (2-ethylhexyl) phthalate	590	U	Diethyl Phthalate	590	U
1,2,4-Trichlorobenzene	590	U	Hexachlorocyclopentadiene	590	U
U=Undetected	J=Estimated	E=Exceeds (Calibration Range B=Detected in		

METHODOLOGY:

Sample analysis was conducted according to: Test Methods for Evaluating Solid Waste, SW-846 Method 8270C.

Authorized signature Mylwhell

8270/625 layout

195 Commerce Way Portsmouth, New Hampshire 03801 603-436-5111 Fax 603-430-2151 800-929-9906

Mr. Herb Kodis

Maine Environmental Laboratory, Inc.

PO Box 1107

Yarmouth, ME 04096-1107

CLIENT SAMPLE ID

Project Name:

SME 833-09

Project Number:

Field Sample ID:

TP-6A

August 5, 2009 SAMPLE DATA

Lab Sample ID:

64386-4 RX

Matrix:

Solid

84

Percent Solid:

1.2

Dilution Factor:

07/23/09

Collection Date: Lab Receipt Date:

07/24/09

Extraction Date: Analysis Date:

08/04/09 08/05/09

PAGE TWO

	ANALYTICAL	RESULTS SI	EMI-VOLATILE ORGANICS		
BASE NEUTRAL COMPOUND	Quantitation Limit μg/kg	Result µg/kg	BASE NEUTRAL COMPOUND	Quantitation Limit μg/kg	Result µg/kg
Acenaphthene	320	U	N-nitrosodimethylamine	590	U
Acenaphthylene	320	U	N-nitroso-di-n-propylamine	590	U
Anthracene	320	U	n-nitrosodiphenylamine	590	U
Benzo[a anthracene	320	U	Pyridine	590	U
Benzo[a] pyrene	320	U	2-Methylnaphthalene	320	U
Benzo[b] fluoranthene	320	U	2-Chloronaphthalene	320	U
Benzo[k] fluoranthene	320	U	Naphthalene	320	U
Benzo(g,h,i) perylene	320	U	Phenanthrene	320	U
Chrysene	320	U	Dibenzofuran	320	U
Dibenz [a,h] anthracene	320	U	Aniline	590	U
Fluoranthene	320	200 J	4-Chloroaniline	590	U
Fluorene	320	U	2-Nitroaniline	590	U
Indeno [1,2,3-cd] pyrene	320	U	3-Nitroaniline	590	U
Pyrene	320	273 J	4-Nitroaniline	590	U
Hexachloroethane	410	U	Carbazole	320	U
Isophorone	590	U			
	Base Neu	itral Surrogat	e Standard Recovery		
2-Fluorobiphenyl 54 %	ó	d5-nitrobenzen	e 49 %	d14-p-terphenyl	61 %
U=Undetect	ed J=Estimated	E=Exceeds	Calibration Range B=Detected in		

METHODOLOGY: Sample analysis was conducted according to: Test Methods for Evaluating Solid Waste, SW-846 Method 8270C.

COMMENTS:

*Due to the reactive nature of this compound, the Benzidine quantitation limit is estimated.

Results are expressed on a dry weight basis.

8270/625 layout

Authorized signature Mullell

													ALT.	I
MAINE ENVIRONMENTAL LABORATORY-	NME	TAI	L LA	BORAT	OR	S	iain of Custody	dy		AN	ANALYSES		LABORATORY REPORT #	₃₄ ,
One Main Street Yarmouth, Maine 04096-6716	mouth, l	Maine	0409(77) 84	(207) 846-6569 fax: (2	fax: (207) 846-9066	990						1
	e-n	nail: r	nelab(e-mail: melab@maine.rr.com	СОШ								Delivered by	
PROJECT MANAGER M. DEY I RO				TELEPHONE		FAX#/E-MAIL	E-MAIL							
COMPANY				PURCHASE ORDER # / BILL TO)ER # / E	ILL 70					***************************************		TURNAROUND REQUEST	T F
ADDRESS				anditable de la constitute de la constit									Standard Standard Priority (St. Bechterse)	"J.
PROJECT NAME				SAMPLER NAME		I)C				H/8	E.
O(2007.10)	-		FIELD FILTRATION	L	<u>-</u>	300	SAN	SAMPLING					CO-101071C-73W	<u>^</u>
SAMPLE SAMPLE IDENTIFICATION Analytic	# CONTAIN	TYPE OF CONTAINE	YES NO	SAMPLE	BARĐ	METHOD O PRESERVED	70	T E	201S				LABORATORY IDENTIFICATION/ SUBCONTRACTOR	
O ctics I	B	VO)	×	Seil	*	Chrech/LCC	bojec11	2960	×				1-98859	i
= Repo	2	2,003	*		7	7.97) }	×					Ι
AS 9	6	Flas	·×		*	Oraca/feric	. 1	5/60	X				R	
<i>-</i> =	2 11/2	258	*		>	707		Ξ	×					ł
Pag pag		Mah	*		*	ONEOH/FOC	,1	3460	×				M	Į.
e 0		62	*		×	560		11	Х					
(49 - J 014	2	HOY-	X		Χ	ONECH/EGE O ECC	ا د	0001	×					
- of		200	*	\rightarrow	×	200	$\stackrel{>}{\rightarrow}$	1)	×					
14														
														[
														l
Received within hold time		Z yes		N/A	į	Custody seal present	⊡ yes	es 🗓 no	COMMENTS	S	MMMENTS (C) 1.24.50) OU		l
Temp. Blank °C 3.8 CErozee	ZErozen-ice packs								8	5 > 5	F2:+ 335	5		
Samples received preserved RELINQUISHED BY SAMPLER:		X yes	0U 7	NO U/A		<u>/a</u>	DATE	TIME	RECEIVED BY:	BY:	Wil 1			1
RELINQUISHED BY:		1				7G	DATE PULLOG	TIME	RECEIVED BY:	BY: ///	2//9			1
RELINQUISHED BY:				7		D/	DATE	TIME	RECEIVED	RECEIVED BY KABORATORY:	ATORY:			1
COC-04 / A19,W						***							page of	1 1